Project B09: Quantum clock interferometry

Within this project, we will investigate the possibility to observe redshift induced dephasing in atom interferometers. Only specific choices of interferometer geometries are suitable for this task, requiring different internal 'clock' states, therefore denoted as 'quantum clock interferometers.' We will develop the experimental concepts and aim for a measurement of a redshift induced dephasing.

Introduction

Our experimental approach utilises the generation of all-optical ytterbium Bose-Einstein condensates and beam splitters at 1156 nm for driving the clock transition 1S03P0. Here, a two-photon E1-M1 excitation process avoids transferring recoil and magic Bragg beam splitters at 759 nm or Bragg beam splitters at 399 nm are employed for transferring momentum. The beam splitting for delocalisation is based on a combination of sequential or higher-order Bragg pulses and Bloch oscillations. Initially, the project will finalise the studies of the different possible interferometer configurations in a small baseline to identify suitable parameters for operation, e.g. beam splitter pulse duration and intensity, and to characterise spurious phase shifts, e.g. lights shifts. In a second step, the ytterbium source will be integrated into the Very Long Baseline Atom Interferometry facility to enable extended times of free fall of 1s to 2s. Here, we target to resolve the gravitationally induced red shift down to the level of ten percent after averaging. This will mark the first measurement of gravitational red shift in an atom interferometer and consequently validate the theoretical description, laying the grounds for future precision measurements of gravitational red shift by means of atom interferometry.

Results

Within the second phase of DQ-mat we jointly developed and finalised schemes for quantum clock interferometry. A collaboration with B07 led to a scheme based on an inversion of the internal (clock) state instead of relying on a superposition of clock states. In a related approach we proposed to utilise a simultaneously operated rubidium interferometer for suppressing vibration noise. Borrowing from these ideas, we developed a new scheme: a self-referenced ytterbium quantum clock interferometer. It offers a differential suppression of vibration noise, operation with ytterbium only (single isotope), reliance on common Bragg-type beam splitters instead of magic Bragg, and all output ports being in the same internal state, easing the detection process.

Furthermore, we investigated large momentum transfer processes for delocalising atoms within the quantum clock interferometers together with A05 and B07, both in the frame of a demonstration experiment, possible implementation of a rotation sensor, and the analysis of spurious phase shifts. As the properties of the atomic ensembles critically affect beam splitting efficiencies, we collaborated on a new all-optical matter-wave lensing scheme which we expect to be transferable to our ytterbium source.


Publications

Showing results 1 - 16 out of 16

Fitzek F, Kirsten-Siemß JN, Rasel EM, Gaaloul N, Hammerer K. Accurate and efficient Bloch-oscillation-enhanced atom interferometry. Physical Review Research. 2024 Aug 5;6(3):L032028. doi: 10.48550/arXiv.2306.09399, 10.1103/physrevresearch.6.l032028
Abend S, Allard B, Arnold AS, Ban T, Barry L, Battelier B et al. Technology roadmap for cold-atoms based quantum inertial sensor in space. AVS Quantum Science. 2023 Mar;5(1):019201. Epub 2023 Mar 20. doi: 10.1116/5.0098119
Abend S, Rasel EM. Twin lattice interferometry for inertial sensing. In Scheuer J, Shahriar SM, editors, Quantum Sensing, Imaging, and Precision Metrology. SPIE. 2023. 1244704. (Proceedings of SPIE - The International Society for Optical Engineering). doi: 10.1117/12.2662377
Kirsten-Siemß JN, Fitzek F, Schubert C, Rasel EM, Gaaloul N, Hammerer K. Large-Momentum-Transfer Atom Interferometers with μrad -Accuracy Using Bragg Diffraction. Physical review letters. 2023 Jul 19;131(3):033602. doi: 10.48550/arXiv.2208.06647, 10.1103/PhysRevLett.131.033602
Lezeik A, Tell D, Zipfel K, Gupta V, Wodey É, Rasel E et al. Understanding the gravitational and magnetic environment of a very long baseline atom interferometer. In Lehnert R, editor, Proceedings of the 9th Meeting on CPT and Lorentz Symmetry, CPT 2022: Proceedings of the Ninth Meeting on CPT and Lorentz Symmetry. World Scientific. 2023. p. 64-68. (Proceedings of the 9th Meeting on CPT and Lorentz Symmetry, CPT 2022). Epub 2022 Sept 19. doi: 10.48550/arXiv.2209.08886, 10.1142/9789811275388_0014
Lindberg DR, Gaaloul N, Kaplan L, Williams JR, Schlippert D, Boegel P et al. Asymmetric tunneling of Bose-Einstein condensates. Journal of Physics B: Atomic, Molecular and Optical Physics. 2023 Jan 18;56(2):025302. doi: 10.48550/arXiv.2110.15298, 10.1088/1361-6455/acae50
Albers H, Corgier R, Herbst A, Rajagopalan A, Schubert C, Vogt C et al. All-optical matter-wave lens using time-averaged potentials. Communications Physics. 2022 Mar 16;5(1):60. doi: 10.48550/arXiv.2109.08608, 10.1038/s42005-022-00825-2
Gebbe M, Siemß JN, Gersemann M, Müntinga H, Herrmann S, Lämmerzahl C et al. Twin-lattice atom interferometry. Nature Communications. 2021 May 5;12(1):2544. doi: 10.1038/s41467-021-22823-8
Hensel T, Loriani S, Schubert C, Fitzek F, Abend S, Ahlers H et al. Inertial sensing with quantum gases: a comparative performance study of condensed versus thermal sources for atom interferometry. European Physical Journal D. 2021 Mar 22;75:108. doi: 10.1140/epjd/s10053-021-00069-9
Roura A, Schubert C, Schlippert D, Rasel EM. Measuring gravitational time dilation with delocalized quantum superpositions. Physical Review D. 2021 Oct 1;104(8):084001. doi: 10.1103/PhysRevD.104.084001
Schubert C, Abend S, Gersemann M, Gebbe M, Schlippert D, Berg P et al. Multi-loop atomic Sagnac interferometry. Scientific Reports. 2021 Dec;11(1):16121. Epub 2021 Aug 9. doi: 10.1038/s41598-021-95334-7
Wodey E, Rengelink RJ, Meiners C, Rasel EM, Schlippert D. A robust, high-flux source of laser-cooled ytterbium atoms. Journal of Physics B: Atomic, Molecular and Optical Physics. 2021 Feb 9;54(3):035301. doi: 10.1088/1361-6455/abd2d1
Canuel B, Abend S, Amaro-Seoane P, Badaracco F, Beaufils Q, Bertoldi A et al. ELGAR: a European Laboratory for Gravitation and Atom-interferometric Research. Classical and Quantum Gravity. 2020 Oct 28;37(22):225017. doi: 10.48550/arXiv.1911.03701, 10.1088/1361-6382/aba80e
Gersemann M, Gebbe M, Abend S, Schubert C, Rasel EM. Differential interferometry using a Bose-Einstein condensate. European Physical Journal D. 2020 Oct 1;74(10):203. doi: 10.1140/epjd/e2020-10417-8
Ufrecht C, Pumpo FD, Friedrich A, Roura A, Schubert C, Schlippert D et al. Atom-interferometric test of the universality of gravitational redshift and free fall. Phys. Rev. Research. 2020 Nov 16;2(4):043240. doi: 10.1103/PhysRevResearch.2.043240
Loriani S, Friedrich A, Ufrecht C, Di Pumpo F, Kleinert S, Abend S et al. Interference of clocks: A quantum twin paradox. Science advances. 2019 Oct 11;5(10):eaax8966. Epub 2019 Oct 4. doi: 10.48550/arXiv.1905.09102, 10.1126/sciadv.aax8966, 10.15488/10475
All publications of the Collaborative Research Centre

Project leader

Dr. Christian Schubert
Address
Welfengarten 1
30167 Hannover
Dr. Christian Schubert
Address
Welfengarten 1
30167 Hannover
Dr. Dennis Schlippert
Address
Welfengarten 1
30167 Hannover
Dr. Dennis Schlippert
Address
Welfengarten 1
30167 Hannover