A cryogenic radio-frequency ion trap for quantum logic spectroscopy of highly charged ions
- authored by
- T. Leopold, S. A. King, P. Micke, A. Bautista-Salvador, J. C. Heip, C. Ospelkaus, J. R. Crespo López-Urrutia, P. O. Schmidt
- Abstract
A cryogenic radio-frequency ion trap system designed for quantum logic spectroscopy of highly charged ions (HCI) is presented. It includes a segmented linear Paul trap, an in-vacuum imaging lens, and a helical resonator. We demonstrate ground state cooling of all three modes of motion of a single 9Be+ ion and determine their heating rates as well as excess axial micromotion. The trap shows one of the lowest levels of electric field noise published to date. We investigate the magnetic-field noise suppression in cryogenic shields made from segmented copper, the resulting magnetic field stability at the ion position and the resulting coherence time. Using this trap in conjunction with an electron beam ion trap and a deceleration beamline, we have been able to trap single highly charged Ar13+ (Ar XIV) ions concurrently with single Be+ ions, a key prerequisite for the first quantum logic spectroscopy of a HCI. This major stepping stone allows us to push highly-charged-ion spectroscopic precision from the gigahertz to the hertz level and below.
- Organisation(s)
-
Institute of Quantum Optics
CRC 1227 Designed Quantum States of Matter (DQ-mat)
- External Organisation(s)
-
Physikalisch-Technische Bundesanstalt PTB
Max Planck Institute for Nuclear Physics
- Type
- Article
- Journal
- Review of scientific instruments
- Volume
- 90
- ISSN
- 0034-6748
- Publication date
- 07.2019
- Publication status
- Published
- Peer reviewed
- Yes
- ASJC Scopus subject areas
- Instrumentation
- Electronic version(s)
-
https://doi.org/10.1063/1.5100594 (Access:
Open)