Quantum machine learning of graph-structured data

verfasst von
Kerstin Beer, Megha Khosla, Julius Köhler, Tobias J. Osborne, Tianqi Zhao
Abstract

Graph structures are ubiquitous throughout the natural sciences. Here we develop an approach that exploits the quantum source's graph structure to improve learning via an arbitrary quantum neural network (QNN) ansatz. In particular, we devise and optimize a self-supervised objective to capture the information-theoretic closeness of the quantum states in the training of a QNN. Numerical simulations show that our approach improves the learning efficiency and the generalization behavior of the base QNN. On a practical note, scalable quantum implementations of the learning procedure described in this paper are likely feasible on the next generation of quantum computing devices.

Organisationseinheit(en)
Institut für Theoretische Physik
SFB 1227: Designte Quantenzustände der Materie (DQ-mat)
Externe Organisation(en)
Macquarie University
Delft University of Technology
Typ
Artikel
Journal
Physical Review A
Band
108
ISSN
2469-9926
Publikationsdatum
10.07.2023
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Atom- und Molekularphysik sowie Optik
Elektronische Version(en)
https://doi.org/10.48550/arXiv.2103.10837 (Zugang: Offen)
https://doi.org/10.1103/PhysRevA.108.012410 (Zugang: Geschlossen)