Monotonicity of the Quantum Relative Entropy Under Positive Maps
- verfasst von
- Alexander Müller-Hermes, David Reeb
- Abstract
We prove that the quantum relative entropy decreases monotonically under the application of any positive trace-preserving linear map, for underlying separable Hilbert spaces. This answers in the affirmative a natural question that has been open for a long time, as monotonicity had previously only been shown to hold under additional assumptions, such as complete positivity or Schwarz-positivity of the adjoint map. The first step in our proof is to show monotonicity of the sandwiched Renyi divergences under positive trace-preserving maps, extending a proof of the data processing inequality by Beigi (J Math Phys 54:122202, 2013) that is based on complex interpolation techniques. Our result calls into question several measures of non-Markovianity that have been proposed, as these would assess all positive trace-preserving time evolutions as Markovian.
- Organisationseinheit(en)
-
Institut für Theoretische Physik
SFB 1227: Designte Quantenzustände der Materie (DQ-mat)
- Externe Organisation(en)
-
Københavns Universitet
- Typ
- Artikel
- Journal
- Annales Henri Poincare
- Band
- 18
- Seiten
- 1777-1788
- Anzahl der Seiten
- 12
- ISSN
- 1424-0637
- Publikationsdatum
- 01.05.2017
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Statistische und nichtlineare Physik, Kern- und Hochenergiephysik, Mathematische Physik
- Elektronische Version(en)
-
https://doi.org/10.1007/s00023-017-0550-9 (Zugang:
Geschlossen)