Inertial sensing with quantum gases: a comparative performance study of condensed versus thermal sources for atom interferometry

verfasst von
T. Hensel, S. Loriani, C. Schubert, F. Fitzek, S. Abend, H. Ahlers, J. N. Siemß, K. Hammerer, E. M. Rasel, N. Gaaloul
Abstract

Abstract: Quantum sensors based on light pulse atom interferometers allow for measurements of inertial and electromagnetic forces such as the accurate determination of fundamental constants as the fine structure constant or testing foundational laws of modern physics as the equivalence principle. These schemes unfold their full performance when large interrogation times and/or large momentum transfer can be implemented. In this article, we demonstrate how interferometry can benefit from the use of Bose–Einstein condensed sources when the state of the art is challenged. We contrast systematic and statistical effects induced by Bose–Einstein condensed sources with thermal sources in three exemplary science cases of Earth- and space-based sensors. Graphic abstract: [Figure not available: see fulltext.]

Organisationseinheit(en)
Institut für Quantenoptik
Institut für Theoretische Physik
QuantumFrontiers
SFB 1227: Designte Quantenzustände der Materie (DQ-mat)
Externe Organisation(en)
DLR-Institut für Satellitengeodäsie und Inertialsensorik
Typ
Artikel
Journal
European Physical Journal D
Band
75
ISSN
1434-6060
Publikationsdatum
22.03.2021
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Atom- und Molekularphysik sowie Optik
Elektronische Version(en)
https://doi.org/10.1140/epjd/s10053-021-00069-9 (Zugang: Offen)