Atom interferometers in weakly curved spacetimes using Bragg diffraction and Bloch oscillations

verfasst von
Michael Werner, Philip K. Schwartz, Jan-Niclas Kirsten-Siemß, Naceur Gaaloul, Domenico Giulini, Klemens Hammerer
Abstract

We present a systematic approach to determine all relativistic phases up to O(c⁻²) in light-pulse atom interferometers in weakly curved spacetime that are based on elastic scattering, namely Bragg diffraction and Bloch oscillations. Our analysis is derived from first principles using the parameterized post-Newtonian formalism. In the treatment developed here, we derive algebraic expressions for relativistic phases for arbitrary interferometer geometries in an automated manner. As case studies, we consider symmetric and antisymmetric Ramsey-Bordé interferometers, as well as a symmetric double diffraction interferometer with baseline lengths of 10 m and 100 m. We compare our results to previous calculations conducted for a Mach-Zehnder interferometer.

Organisationseinheit(en)
SFB 1227: Designte Quantenzustände der Materie (DQ-mat)
Institut für Theoretische Physik
Institut für Quantenoptik
Externe Organisation(en)
Zentrum für angewandte Raumfahrt­technologie und Mikro­gravitation (ZARM)
Universität Bremen
Typ
Artikel
Journal
Physical Review D
Band
109
ISSN
2470-0010
Publikationsdatum
29.01.2024
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Kern- und Hochenergiephysik
Elektronische Version(en)
https://arxiv.org/abs/2310.03719 (Zugang: Offen)
https://doi.org/10.1103/PhysRevD.109.022008 (Zugang: Geschlossen)