Improved limits on the coupling of ultralight bosonic dark matter to photons from optical atomic clock comparisons

verfasst von
M. Filzinger, S. Dörscher, R. Lange, J. Klose, M. Steinel, E. Benkler, E. Peik, C. Lisdat, N. Huntemann
Abstract

We present improved constraints on the coupling of ultralight bosonic dark matter to photons based on long-term measurements of two optical frequency ratios. In these optical clock comparisons, we relate the frequency of the \({}^2S_{1/2} (F=0)\leftrightarrow {}^2F_{7/2} (F=3)\) electric-octupole (E3) transition in \(^{171}\)Yb\(^{+}\) to that of the \({}^2S_{1/2} (F=0)\leftrightarrow \,{}^2D_{3/2} (F=2)\) electric-quadrupole (E2) transition of the same ion, and to that of the \({}^1S_0\leftrightarrow\,{}^3P_0\) transition in \(^{87}\)Sr. Measurements of the first frequency ratio \(\nu_\textrm{E3}/\nu_\textrm{E2}\) are performed via interleaved interrogation of both transitions in a single ion. The comparison of the single-ion clock based on the E3 transition with a strontium optical lattice clock yields the second frequency ratio \(\nu_\textrm{E3}/\nu_\textrm{Sr}\). By constraining oscillations of the fine-structure constant \(\alpha\) with these measurement results, we improve existing bounds on the scalar coupling \(d_e\) of ultralight dark matter to photons for dark matter masses in the range of about \( 10^{-24}-10^{-17}\,\textrm{eV}/c^2\). These results constitute an improvement by more than an order of magnitude over previous investigations for most of this range. We also use the repeated measurements of \(\nu_\textrm{E3}/\nu_\textrm{E2}\) to improve existing limits on a linear temporal drift of \(\alpha\) and its coupling to gravity.

Externe Organisation(en)
Physikalisch-Technische Bundesanstalt (PTB)
Typ
Artikel
Journal
Physical Review Letters
Band
130
Seiten
253001
Anzahl der Seiten
6
ISSN
0031-9007
Publikationsdatum
22.06.2023
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Physik und Astronomie (insg.)
Elektronische Version(en)
https://doi.org/10.48550/arXiv.2301.03433 (Zugang: Offen)
https://doi.org/10.1103/PhysRevLett.130.253001 (Zugang: Offen)