The Wigner distribution of n arbitrary observables

verfasst von
René Schwonnek, Reinhard F. Werner
Abstract

We study a generalization of the Wigner function to arbitrary tuples of Hermitian operators. We show that for any collection of Hermitian operators A1, ..., An and any quantum state, there is a unique joint distribution on Rn with the property that the marginals of all linear combinations of the Ak coincide with their quantum counterparts. In other words, we consider the inverse Radon transform of the exact quantum probability distributions of all linear combinations. We call it the Wigner distribution because for position and momentum, this property defines the standard Wigner function. We discuss the application to finite dimensional systems, establish many basic properties, and illustrate these by examples. The properties include the support, the location of singularities, positivity, the behavior under symmetry groups, and informational completeness.

Organisationseinheit(en)
Institut für Theoretische Physik
SFB 1227: Designte Quantenzustände der Materie (DQ-mat)
Typ
Artikel
Journal
Journal of mathematical physics
Band
61
ISSN
0022-2488
Publikationsdatum
04.08.2020
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Statistische und nichtlineare Physik, Mathematische Physik
Elektronische Version(en)
https://doi.org/10.1063/1.5140632 (Zugang: Geschlossen)