The Wigner distribution of n arbitrary observables
- verfasst von
- René Schwonnek, Reinhard F. Werner
- Abstract
We study a generalization of the Wigner function to arbitrary tuples of Hermitian operators. We show that for any collection of Hermitian operators A1, ..., An and any quantum state, there is a unique joint distribution on Rn with the property that the marginals of all linear combinations of the Ak coincide with their quantum counterparts. In other words, we consider the inverse Radon transform of the exact quantum probability distributions of all linear combinations. We call it the Wigner distribution because for position and momentum, this property defines the standard Wigner function. We discuss the application to finite dimensional systems, establish many basic properties, and illustrate these by examples. The properties include the support, the location of singularities, positivity, the behavior under symmetry groups, and informational completeness.
- Organisationseinheit(en)
-
Institut für Theoretische Physik
SFB 1227: Designte Quantenzustände der Materie (DQ-mat)
- Typ
- Artikel
- Journal
- Journal of mathematical physics
- Band
- 61
- ISSN
- 0022-2488
- Publikationsdatum
- 04.08.2020
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Statistische und nichtlineare Physik, Mathematische Physik
- Elektronische Version(en)
-
https://doi.org/10.1063/1.5140632 (Zugang:
Geschlossen)