Resolution of the colocation problem in satellite quantum tests of the universality of free fall

verfasst von
Sina Loriani, Christian Schubert, Dennis Schlippert, Wolfgang Ertmer, Franck Pereira Dos Santos, Ernst Maria Rasel, Naceur Gaaloul, Peter Wolf
Abstract

A major challenge common to all Galilean drop tests of the Universality of Free Fall (UFF) is the required control over the initial kinematics of the two test masses upon release due to coupling to gravity gradients and rotations. In this work, we present a two-fold mitigation strategy to significantly alleviate the source preparation requirements in space-borne quantum tests of the UFF, using a compensation mechanism together with signal demodulation. To this end, we propose a scheme to reduce the gravity-gradient-induced uncertainties in an atom-interferometric experiment in a dedicated satellite mission and assess the experimental feasibility. We find that with moderate parameters, the requirements on the initial kinematics of the two masses can be relaxed by five orders of magnitude. This does not only imply a significantly reduced mission time but also allows to reduce the differential acceleration uncertainty caused by co-location imperfections below the $10^{-18}$ level.

Organisationseinheit(en)
Institut für Quantenoptik
QuantumFrontiers
SFB 1227: Designte Quantenzustände der Materie (DQ-mat)
Externe Organisation(en)
Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)
Observatoire de Paris (OBSPARIS)
Typ
Artikel
Journal
Physical Review D
Band
102
ISSN
2470-0010
Publikationsdatum
18.12.2020
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Physik und Astronomie (sonstige)
Elektronische Version(en)
https://arxiv.org/abs/2006.08729 (Zugang: Offen)
https://doi.org/10.1103/PhysRevD.102.124043 (Zugang: Offen)
https://doi.org/10.15488/10647 (Zugang: Offen)